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On the closed form of Wigner rotation matrix elements*
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The closed forms of some rotation matrix elements d’,;,,m(w/2) are presented. The
closed forms of summation involved two binomials and some special hypergeometric
functions are also obtained. The MAPLE V program which calculates &, (),

&,,.(r/2) and the help file are given in appendix.

1. Introduction

An arbitrary rotation of a coordinate frame about its origin in the three-
dimensional space can be completely specified by three real parameters. The most
useful description of rotation in the literature and in textbooks is that in terms of
the Euler angles o, 3, v. The matrix representations to the finite rotations in terms
of Euler angles were first derived by Wigner [1,2] (therefore, they are often named
Wigner rotation matrix elements), and subsequently their many properties and dif-
ferent derivations have been investigated by many authors [3-8]. Because the rota-
tion matrix elements involve the sum of a product of two binomial coefficients
and sines and cosines of a half-angles, any calculation involving them is tedious.
Although the properties of the rotation matrix elements have been well investi-
gated, the calculation of functional expressions is still not satisfactory to us. Even
the results of numerical calculations are correct only to five significant figures as
the angular momentum quantum number increases toj = 13[9]. The reason for the
inaccuracy may be lies in the operations dealing with large numbers (such as factor-
ials). These cannot be handled by FORTRAN or BASIC programs, for example,
unless they have good arithmetic methods [10]. Fortunately, symbolic calculation
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systems, such as, MAPLE V, MATHEMATICA, REDUCE, MacSyma and
DERIVE, etc., can overcome the problem of operations involving large numbers to
obtain both exact functional expressions and correct numerical numbers with the
desired significant figures.

In section 2 of this paper, we simply summarize the notation and properties of
the rotation matrix elements for convenient reference. In section 3, we mainly dis-
cuss the special properties of the rotation matrix elements with 8 = /2. The simi-
larity transformation for any rotation angle 3 around the Y axis can be converted
to a combination of a rotation of 7/2 around the Y axis and a rotation with respect
to the Z axis. This similarity transformation will convert the powers of sines and
cosines of half-angles to sines and cosines of multiples of 5. A method has been pro-
posed to find closed forms of rotation matrix elements with 3 = 7 /2. These closed
forms allow calculations up to j greater than 200 (which are still very fast!). Many
closed forms of summations involving two binomials are also obtained. Since the
rotation matrix elements are related to the Jacobi polynomials and hypergeometri-
cal functions, many closed forms of hypergeometrical functions and Jacobi polyno-
mials can be obtained (we leave the Jacobi polynomial evaluation to the
interested reader). The rotation matrix elements play an important role in atomic
and molecular physics, chemical physics, molecular spectroscopy, angular momen-
tum theory, group theoretical applications and nuclear physics.

2. Expressions for Wigner rotation matrix elements

A 2j + 1-dimensional irreducible vector space, V' (j), of the group of proper rota-
tions in the 3-dimensional space O*(3) is spanned by a set of 2j + 1 basis functions
{%jm, m = —jtoj}. Since an irreducible vector space of a group is an invariant space
with respect to any operator of the group, we may then express an Eulerian rotation
upon one of the basis functions of V(j) as

RV, = Z (B Ui (1)

where the rotation matrix elements are defined as
D, (afy) = (jm' | e7 e Bl | i) (2)
Since the matrix representative of J, is diagonal in this base, eq. (2) becomes
D}, (aBy) = e (jm | e~ | jmpe=m
=e"ed, (B)e™. (3)

Wigner [1,2] first derived the expression for the rotation matrix element dfn,m (B)
and Rose [5] modified it as follows:
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G = | G llzg("”m’”’"ﬂ Q[ Prowily
] (COS g) Ybmm—2s (sin g) '"’-'”‘*'2” 4)

where (:)’s are binomial coefficients. The summation over sis restricted to the argu-
ment of any factorial which is non-negative. Let s =j —m’ — o, then &, .(8) is
related to other definitions [12] by

&, (8) (Rose[S)=d, (8) (Brink & Satchler [6], Zare [8])
= (-l)m'_'"d’,;t,m(ﬁ) (Edmonds [4], Wigner [1,2], Fano & Racah [3]).
(5)

From eq. (4) we can obtain the symmetry properties of d’,;,,m (B), where j, m’ and m
may be either integral or half-integral:

&(B) = (-1)" ", (B) = (1) " ,,_(8) = (=1)"""d,,.(~0), (62)

By(m+ B) = (1Y ", (8), (6b)

&y = B) = (1Y, _,.(8), (6c)

Byy(1) = (=1 "m0, (6d)

By (—T) = (—1)"’" e 0 (6¢)

@ n(0) = By (6f)
The &, (8) satisfy the following differential equations:

{d—;z +ootpL e e ’"'28;122;"”/ SO0 4 i+ 1 )}d;;,,m(ﬂ) =0 (7)
and[13]

{2603 = mim —sin (0

= [ +m)(G —m)G +m) G —m)]'d,,(8) (8a)

and
{(j+1) cos—mm+ (j+1)sing ﬂ} /()
=[(+m+D)(—m+ 1) +m +1)G—m +1)]"2&3(8). (8b)
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The detailed descriptions of egs. (8a) and (8b) can be found in [13]. Egs. (5) to (8b)
can also be translated to the rotational wave functions D/, (afBy) (not
normalized).

3. On the rotation matrix elements of 3 = /2
3.1. THE CALCULATION OF &, _(f)

The disadvantage of eq. (4) is that it expresses the rotation matrix elements in
terms of powers of cos((3/2) and sin(3/2). Wigner [14] has shown the matrix repre-
sentatives for an arbitrary S can be obtained by the following similarity transfor-
mation:

s

R(0,8,0) = RG,O,O)R(O,E,O)R(ﬂ,O,O)R(O,—«%,O)R(—g,o,o) L)
Therefore,
(im" | R(0, 8,0) | jm)
— (' | R(g,o,o)R(o,g,o)R(ﬂ,o,O)R(o —%,O)R(~7—2r,0,0) | jm)

= (=1) el (A, N, (10)
my
where A/, = &, w7/ 2) and this equation can be simplified to
Bpy(B) = D N ok(0) +2> N N k(mB) (11a)
m'>0
for integral j, m',m,and
=2 Z mm" mm”K'(m”ﬁ) (11b)
' >1/2
for half-integral j, m', m, where
cos x if M —m =0 (mod 4),
—sinx if m' —m=1 (mod 4),
K(x) = .y (12)
—CcosX 1fm—m=2(mod4),
sin x if M —m =3 (mod 4).

Therefore, in principle, to calculate d’ () one only needs to know A{n,m. Both
the exact and numerical values of Am,m, have been calculated for 0<m', m, j<20in
the present work. Note that Behkami [9] has tabulated Amm, Jj<13, nurnerlcally
and Bradley [15] used a desk machine to construct the tables of AJ » from;j = 0up
to j = 20, numerically. The tables of A/, have been dep031ted w1th the Royal
Society and the Library of Congress. The general forms for different m' =j — K/,
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m=j—k, kK, k=0,1,..., 20, have also been calculated by a MAPLE program
and the program is given in the appendix. Both procedures for calculating egs. (4)
and (11) have been written and run under the MAPLE V system. The results agree
with each other. In terms of egs. (6a) and (6¢) (three properties), it is easy to show
that the number of different matrix elements to be tabulated from (22 + 1)? reduce
to (7 + 1)(j + 2)/2 for integer j, and to (2j + 1)(2j + 3)/8 when j is a half-integer.
Previously Buckmaster [16] used two propertles of d’m (B) and reduced the tabu-
lated numbers from (22 + 1)*to (j + 1) for integer j and (2j + 1)(2j + 3) /4 for the
half-integer ;.

3.2. THE CLOSED FORMS OF SOME SPECIAL A{,,,m

When 8 = 7/2, eq. (4) reduces to

s @ (G55 e () (L)

(13)
and eq. (6¢) becomes
Ajm ( 1)I+m —-m'm * (14)
Itis easy to show that
N, =0 (15)
ifj = odd, and
N = (=1YT"A £0 (16)
onlyifj +m = even.Itcanalso be shownthat
25 A ___(_I)JF(]+1/2) 17
AT = Ag NG ‘ (17)
Here I’s are the gamma functions,j = 1,2, 3, ..., and fromeq. (13) we have
; (LY
8= (3) (18)

By using our previous results [17] and combining them with eq. (17) we obtain the
following closed forms:

AR (-1)*T(k +1/2)

2+ Dhr (19)
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2y _ (=1)"'T(k +3)
2 2k + 1)!V27

AZH _ CRN(ES))
2 kW2r
Herek=0,1,2,.... Alsowehave

B k(2k+1) 17*Tk+1/2)
A% = (-1 [(k-H)(Zk—l)] N

(=1 k(2K + 3)]'*T (k + 1)
(k+ 1)V

2k — F(k+2)
Az = (~1) \/‘k' 2+ 1 (k+1)]1/2’

2k +k— 4Tk +1)

2k+1 _
AZI -

H

% -1 k
A =(=1) (k+ D)2k —1)y/m
AZeH _ (-—1)" 4Tk +3/2)
2 (k+ D2k +1)y/7’
wherek = 1,2,3,.... Moreover,
AR = (_1)kH 2k+1 1 T(k+1/2)
10 2(k+1) kiy/m

wherek =0,1,2,3,...,and
k(2k +1)(2k + 3) }‘/2 T'(k+1/2)
(k+1)(k+2)(2k—1) K2r
wherek = 1,2,3,...,and
(262 +k —19)T(k +1)
(k+ D2k -1/
wherek = 2,3,4,...,and
k 3(6K* +9k — 16)T(k +1)
20k + 2)1(2k — 1)y/m '
wherek =1,2,3,...,and

A = (—1)"[

A% = (-1)F

A% = (-1)

(20)

(21)

(22)

(23)

(25)

(26)

(27)

(28)

(29)

(30)
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3 k(k+ )2k +3)(k—1) 1Y’ T(k+1/2)
Ai"g_(_l)k[(k+1)(k+2)(2k—-1)(2k—3) NI (31)
3 (576 — 67k — 133k? + 4k> + 4k*)T'(k + 1)
A =1 Dk (32)
o 1 16(17 = 3k — 2T (k + 2)
MG =) T TR (33)
wherek = 2,3,4,. ... Somewhat more general forms are
o (-1 G +m)
Yo = AT GT =TS ) G4
and
o _E)™MyRl Gamt 7
S | ey ]
- {r(l + G+ m)/2T(A/2— (G —m)/2)
Jj+m+1
* T TG =7 ) (33)
and
j _ (=) G +m)! 2
R [y
y { 2m? —j(j+1)
T+ (G +m)/2L(1/2 = (j — m)/2)
2m(j+m+1)
+ BT U A= ) (36)
To obtain eq. (34) we have used the following reactions [1,2,5]:
2 Fi (m’ —j,—m—jim —m+ 1;—tan2§>
_[GmG=m)] ()" =)t
B [(I -m)l(j + m’)!} (cos&)F+m= (sin &y~ ot (B) - (37)
Here m' >m, and [18]
e T 4a-b)r(1/2)
2F1=(a,b;1+a-b,—1)_2 F(l—b+a/2)I‘(l+a)’ (38)

inwhichl +a—5#0,-1,-2,...,and the hypergeometric function is defined
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2Fi(a,b;c;z) = Z (a(c) p (39)

and the Pochhammer symbol is

[(a+n)
(a)n = I'\(a) !

ie.
(@)y=1, (a),=ala+1)...(a+n-1), n=1,2,3,....

In principle, we can use the same method to find closed forms for Am3, A’m4,
AN, .. etc.

3.3. THE CLOSED FORMS FOR SUMMATIONS OF TWO BINOMIAL COEFFICIENTS

Summations involving two binomial coefficients are often used in angular
momentum theory and combination theory. We can rewrite eq. (13) as follows:

s (), o) 2R
(40)

By comparing the results of the previous section with eq. (40), we then obtain the
following expressions:

ser(D)(2) -z (P

22}( 1)} F(/_—i_/l"/Z)’ (41)
2k _1\kt+H1n2k
I 1)( ><2+S>=(—(£-1-)§7§r(k+1/2). (42)
Herek =1,2,3,...,and
2k + 1\ 2k (=1 2%T(k +1/2)
Z(l ( ><s>= kw(% 2 (43)

2 +2\ [ 2k+1Y (=122 (k4 3/2)
e (7)) e (44
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wherek = 2,3,4,...,2a

2k+2 2k —2 ( 1)k22k(2k2 +k —4)F(k+ 1/2)
( s >( ) B 2k — D (k+ )/ o (49)
( ( ) T @k D)k + DlVE (46)
(2k+ 1)*2% (22 + k — 19)T'(k + 1/2) .

2k — 1) (k+ 1)\/7 , (47)
D

)
)57)
e

Cef 2K+ 2k -2 %3 x 2% (6k? + 9k — 16)I'(k + 1/2)
e (7)) - e+ Dk~ v ’
(48)
wherek =1,2,3,...,and
J(2k+ 1N (2%+1\  (=1)F2%0k+ DIk +1/2)
;('”( 5 )(us)“ (k+ Diyr ’ (49)
wherek =0,1,2,...,and
o2+ 1N (2k+ 1Y  (=1)"2%k(2k + T (k + 1/2)
2("”< G- &+ 2V 0
wherek =0,1,2,...,and
(K k 2k=mpe) [x

2 ”J(J <m+> "= (1 + e+ m) 2)T(1/2— (k—m)/2)

s

(51)

s(k+m\ k—m\ (=1)"2k=m(k + m)\/w
ZM)( s )(s—m)—(k)!P(l+(k+m)/2)I‘(1/2——(k—m)/2)’
(52)

wherem = 0,+1,+£2,...,and

S 2k+5\ (2 =3\ (=1)12%H5(17 — 3k — 2k1)T(k + 3/2)
ZH)( s )( )‘ 2k + )2k — 1) (k+2)y/x

5

N
(53)

wherek = 2,3,...,and
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Z(_l)s(Zk;l—éi) (2ks—4)

(=1)*2%(576 — 67k — 133k% + 4k + 4D (k + 1)
- 2k —3)(2k - Dk + 2)/7 ’

Z(“l)s(k+m> (kk*m ) _ (SR e+ m)lyr

s o i (k+ 1)
m
% {m + (k+m)/20(1/2 — (k —m)/2)
+ k+m+1 }
T(/2+ (k+m)/2T(—(k—m)/2) |’

where I'(0) = o0, and

(k+m k—m —1)"2k-m Jr(k + m)!
ZS:(_U( S )(k—Z—s):( : (k+\/2—)(! :
2m? — k(k +1)
{I“(l + (k+m)/2)I(1/2 — (k—m)/2)
2mk+m+1) }
(3/2+ (k+m)/2)T(~(k—m)/2) |

Z(—l)‘(2k+ 1 ) (2k- 1) _ (=127 (k +1/2)

T

- s 1+ (k+ D/ '
o 2+2\ [ 2k N\ (=1)2%T(k +1/2)
Z(“l) ( s )(1 +s> a (k+ Dly/m '

3.4. SPECIAL VALUES OF HYPERGEOMETRIC FUNCTIONS

When 8 = 7/2, eq. (37) becomes
2Ai(m' —j,—m—jim —m+1,-1)

(i+ ‘(]—ml)| 12 m-—my j
- [T O i

(54)

(55)

(59)

where m’ >m, and, using eqgs. (17), (19), (35), (36) and (59), we obtain some special

values of the hypergeometric functions:
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2F1(=2j,-2j;1; 1) = 2F1 (1 = 2/, -1 = 2j;1; —1)
(1231 (j + 1/2)

NI )
_1Y2%T(
oA~y -2 - - = EEZEU D, (61
wherem = 1,2,3,...,and
2Fi(m—j,—1—jim—1)=2"(m-1)ly/r
m
g {m + G+ m)/DT(1/2 - - m)/2)
j+m+1
* T T | ()
2Fi(m—j, =2 —jim—1;-1) = 27"/m(m - 2)!
{ 2m? —j(i +1)
L1+ (+m)/2)T(1/2 = (j —m)/2)
2m(j+m+1)
* AT | (6)
where m = 2,3,4,.... The interested reader can use the same technique to obtain

many other special values of the hypergeometric functions. Therefore, it is note-
worthy that the relation between the sum over binomial coefficients and hypergeo-
metric function are also obtainable:

s ()2

(j"m)! ! . et R
z(m’-—m)!(i——m’)! 2Km —j,-m—jim —m+1;-1), (64)

wherem’' > m.

4. Conclusions

In this work we have presented many relations between A{n,m and gamma func-
tions, and summations involving two binomial coefficients, and hypergeometric
functions. Even though a general closed form for A/, has not been found yet, a
useful way to determine closed forms of A/, . with special values of m’ or m has

() is related to the Jacobi polynomials [17], many rela-

been explored. Since &,
tions between the Jacobi polynomials and summations involving two binomial
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coefficients, and hypergeometric functions can be deduced. Some of the applica-
tionsof A’ , canbe foundinrefs.[11,15,18,19].

m'm
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Appendix
MAPLE PROGRAM FOR ROTATION MATRIX ELEMENTS

# The following program calculates Wigner rotation matrix elements

# which runs on MAPLE V system.

#

‘help/text/rotationmatrix’ :=TEXT(

‘FUNCTION: d, Rot - calculate Wigner rotation matrix elements with’,
¢ anglex.’,

‘CALLING SEQUENCE:*,

‘d(j, n, m, x)",

‘Rot(j, n, m, x)°,

‘d90(j, n, m);’,

‘PARAMETERS:‘,

‘j - rotational angular momentum quantum number.,

‘n, m - magnetic quantum number.",

‘x - Euler angle.”,

‘SYNOPSIS: - A typical call to the d and Rot functions are",

d(j, n, m, x), d90(j, n, m) and Rot(j, n, m, x) wherej >= 0, it can be integer*,
or half-integer. n, m = —jtoj, xis an angle (radian).’,

- Definition of rotation matrix element is the same as’,

¢ Rose[5], Brink & Satchler [6], Zare [8] and Lai[12].",

*  Theresults of d(j, n, m, x) and Rot(j, n, m, x) should be the same.",

‘EXAMPLES: ,
‘d(1,1, 1,x);5,
‘d90(1, 1, 1);,
‘Rot(l, 1,1,x);',
‘d(1,0,0,x);",
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‘Rot(1,0,0,x);",

‘d(, 0, —1,x);5,
‘Rot(1,0, -1, x);,

‘d(i, -1, -1, x);,
‘Rot(1, -1, —1,x); ,
‘d(2,0,0,x);,
‘Rot(2,0,0,x);",
‘d(1/2,1/2,1/2,x);°,
‘Rot(1/2,1/2,1/2,%);,
‘d(3/2,1/2,-3/2,x);',
‘d90(3/2,1/2,-3/2);,
‘Rot(3/2,1/2,-3/2,x);,

3

“).
#
# Based oneq. (4)
#
d:=proc(j,n,m, x)
localdl, d2,ds,s:
if x = Pithen
dl:= (-1)"(j + m)*Kronecker(n + m, 0);
else
ifx =-Pithen
dl:= (-1)"(j — m)*Kronecker(n + m, 0);
else
if x = 2*Pithendl:= (—1)"(2*j)*Kronecker(n, m);
else
if x = 0 thendl := Kronecker(n, m);
else

dl:= (§+o)"(1/2)*G — o)!"(1/2)/(G —m)!"(1/2)/ (G + m)!"(1/2),
ds:=0;
for s from 0 to 2*j
do
ifj+m—s>=0andj—n—s>=0andn+s—m >= Othen
ds:=ds+(—1)"(n — m + s)*binomial(j + m, s)*binomial(j — m,j — n —s)
*cos(1/2*x)"(2*) +m — n — 2*s)
*sin(1/2*x)"(n — m + 2%s):
f1; od;
d2 :=factor(simplify(ds*dl));
f1:
fi:f1;f1
end;

#
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d90 := proc(j, n, m)
localdl,s; :
d1 :=simplify(sqrt( + n)!*(G —n)!/ G — m)!/ (G + m)H*
sum((—1)**(n — m + s)*binomial(j + m, s)*binomial(j —m,j —n —s)
*(1/2)7,s=0..2%)));end:
k := proc(n, m, x)
localkl;
if type((n — m) mod 4, 0) then k1 := cos(x);

elseif type(n — mmod 4, 1) then k1 := —sin(x);
elseif type(n — m mod 4, 2) then k1 := —cos(x);
elseif type(n — m mod 4, 3) then k1 :=sin(x);

fi;fi;f1;fi; end:
#
# Based onegs. (11a)to (12).
#
Rot:=proc(j, n, m, x)
locald2, g2;
if x =Pi then g2 := (—1)(j + m)*Kronecker(n + m, 0);
elseif x =-Pithen g2 := (—1)(j — m)*Kronecker(n + m, 0);
elseif x =0 then g2 := Kronecker(n, m);
elseif x = 2*Pithen g2 :=(—1)(2*j)*Kronecker(n, m);
else
if type (j, fraction) then

d2:=0,
form2from1/2toj
do

d2:=d2 +2*d90(j, n, m2)*d90(j, m, m2)*k(n, m, m2*x);
od;
else
d2 :=d90(j, n, 0)*d90(j, m, 0)*k(n, m, 0);
form2from 1toj
do
d2:=d2 +2*d90(j, n, m2)*d90(j, m, m2)*k(n, m, m2*x);
od;
fi;fi;f1; ;6%
factor(simplify(d2));
end:
Kronecker := proc(n, m)
localkl;
ifn=mthenkl:=1;
elsekl :=0;
fi;
end:



S.T. Laietal. / Wigner rotation matrix elements 145
References

[1] E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,
(Vieweg, Braunschweig, Germany, 1931).

[2] E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra
(Academic Press, New York, 1959).

[3] U.Fanoand G. Racah, Irreducible Tensorial Sets (Academic Press, New York, 1957).

[4] A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton, U.P., Princeton, NJ,
1960).

[5] M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

[6] D.M. Brink and Satchler, Angular Momentum (Oxford University Press, 1962).

[7] L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics (Addison-Wesley,
Reading, MA, 1981).

[8] R.N. Zare, Angular Momentum (Wiley, 1988).

[9] A.N.Behkami, Nuclear Data Tables 10 (1971) 1.

[10] D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum Theory of Angular
Momentum (World Scientific, 1988).

[11] Q.E. Zbang, L.T. Lin, N.Q. Wang, Y.G. Wang, S.T. Lai and Y.X. Yu, Polyhedral Molecular
Orbitals (Chinese Academic Press, 1987).

[12] S.T.Lai, Ph.D. Thesis, The Catholic University of America (1991).

[13] S.T. Lai, P. Paltingand Y.N. Chiu, J. Molec. Sci. 10 (1994) 1.

[14] E.P. Wigner, On the matrices which reduce the Kronecker products of representations of S.R.
Groups (1940).

{15] C.J. Bradley, The matrix representatives d,s‘l,zn(w/Z) for the rotation group, London: The Royal
Society Depository of Unpublished Tables, File No. 79, Washington: Library of Congress
Collection, No. 61-18944.

[16] H.A. Buckmaster, Can. J. Phys. 42 (1964) 386; 44 (1966) 2525.

[17] S.T. Laiand Y.N. Chiu, J. Math. Phys. 30 (1989) 844.

[18] S.L. Altmann and C.J. Bradley, Phil. Trans. Roy. Soc. A255 (1963) 25.

[19] S.T. Lai, Q.E. Zhang, P. Palting and Y.N. Chiu, The transformation coefficients between the
irreducible bases of SO(3) and O group: AMAPLE V symbolic calculation package, presented at
the 5th National Quantum Chemistry Symposium of China, Xiamen University (1993).



